• Transcribe
  • Translate

Eccentricity of the Sextant by Frederic Furbish, 1893

Eccentricity of the Sextant by Frederic Furbish, 1893, Page 85

More information
  • digital collection
  • archival collection guide
  • transcription tips
 
Saving...
[page][illegible][/page] Expressed in full (5) is h[subscript]0[/subscript] = h + ((cos φ cos δ)/(sin(φ - δ)))m - ((cos φ cos δ)/(sin(φ - δ)))[superscript]2[/superscript] cot (φ - δ)n -- The following special applications of the formula may be found useful for reference. For the direct position of the sextant, (∝) Star South of zenith; i.e. δ<φ h[subscript]0[/subscript] = h + ((cos φ cos δ)/(sin(φ - δ)))m - ((cos φ cos δ)/(sin(φ - δ)))[superscript]2[/superscript] cot(φ - δ)n (β) Star North of zenith; i.e. δ>φ , h[subscript]0[/subscript] = h - ((cos φ cos δ)/(sin(φ - δ)))m + ((cos φ cos δ)/(sin(φ - δ)))[superscript]2[/superscript] cot(φ - δ)n For the Reverse position of the sextant, (∝) Star South of zenith; i.e. δ<φ h[subscript]0[/subscript] = h - ((cos φ cos δ)/(sin(φ - δ)))m + ((cos φ cos δ)/(sin(φ - δ)))[superscript]2[/superscript] cot(φ - δ)n , (β) Star North of zenith; i.e. δ>φ , h[subscript]0[/subscript] = h + ((cos φ cos δ)/(sin(φ - δ)))m - ((cos φ cos δ)/(sin(φ - δ)))[superscript]2[/superscript] cot(φ - δ)n For lower culmination (∝) h[subscript]0[/subscript] = h - ((cos φ cos δ)/(sin(φ - δ)))m - ((cos φ cos δ)/(sin(φ - δ)))[superscript]2[/superscript] cot(φ - δ)n
 
Scholarship at Iowa